Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging.
نویسندگان
چکیده
Chemical shift based methods are often used to achieve uniform water-fat separation that is insensitive to Bo inhomogeneities. Many spin-echo (SE) or fast SE (FSE) approaches acquire three echoes shifted symmetrically about the SE, creating time-dependent phase shifts caused by water-fat chemical shift. This work demonstrates that symmetrically acquired echoes cause artifacts that degrade image quality. According to theory, the noise performance of any water-fat separation method is dependent on the proportion of water and fat within a voxel, and the position of echoes relative to the SE. To address this problem, we propose a method termed "iterative decomposition of water and fat with echo asymmetric and least-squares estimation" (IDEAL). This technique combines asymmetrically acquired echoes with an iterative least-squares decomposition algorithm to maximize noise performance. Theoretical calculations predict that the optimal echo combination occurs when the relative phase of the echoes is separated by 2pi/3, with the middle echo centered at pi/2+pik (k=any integer), i.e., (-pi/6+pik, pi/2+pik, 7pi/6+pik). Only with these echo combinations can noise performance reach the maximum possible and be independent of the proportion of water and fat. Close agreement between theoretical and experimental results obtained from an oil-water phantom was observed, demonstrating that the iterative least-squares decomposition method is an efficient estimator.
منابع مشابه
Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) fast spin-echo imaging of the ankle: initial clinical experience.
OBJECTIVE Reliable, uniform fat suppression is important. Multiple approaches currently exist, many of which suffer from either suboptimal signal-to-noise ratio (SNR), or the inability to obtain consistent fat suppression around the ankle joint. Our purpose was to test iterative decomposition of water and fat with echo asymmetry and the least-squares estimation (IDEAL) method in combination wit...
متن کاملComparison of IDEAL, MultiPeak IDEAL and Fat-Saturated FSE for Imaging of Osteoarthritis (OA) Knee Patients: Initial Clinical Experience
INTRODUCTION Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-Squares Estimation (IDEAL) is a promising MRI technique for robust fat and water separation (1). It was found with higher fluid/cartilage contrast-to-noise ratio efficiency and fat-suppression quality than FSE imaging in ankle. The goal of this study is to assess image quality, fat suppression and fat-water sepa...
متن کاملIDEAL at 7T in Mice Using Asymmetric Spin Echo and Gradient Echo Acquisitions
An asymmetric spin echo (aSE) technique was developed to produce uniform, robust fat-water separation in mice at 7T using Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-squares estimation method (IDEAL). The aSE technique had superior image quality as compared to gradient echo IDEAL estimation. Both the spin echo and gradient echo IDEAL techniques resulted in more accura...
متن کاملFast decomposition of water and lipid using a GRASE technique with the IDEAL algorithm.
Three-point Dixon techniques achieve good lipid-water separation by estimating the phase due to field inhomogeneities. Recently it was demonstrated that the combination of an iterative algorithm (iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL)) with a fast spin-echo (FSE) three-point Dixon method yielded robust lipid-water decomposition. As an a...
متن کاملPractical Application of Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-Squares Estimation (IDEAL) Imaging in Minimizing Metallic Artifacts
Iterative decomposition of water and fat with echo asymmetry and the least-squares estimation (IDEAL) is a recently developed method for robust separation of fat and water with very high signal-to-noise-ratio (SNR) efficiency. In contrast to conventional fat-saturation methods, IDEAL is insensitive to magnetic field (B0 and B1) inhomogeneity. The aim of this study was to illustrate the practica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2005